Skip to main content
Add documents, websites, or databases to your agents using RAG (Retrieval-Augmented Generation).

Setup Your RAG Pipeline

1

Choose Vector Store Provider

Select where to store your document embeddings:Vector store options

Local Options

  • FAISS - Fast, in-memory (default for local development)
  • LanceDB - Persistent, serverless storage

Cloud Options

  • Pinecone - Managed, scalable vector database
  • Qdrant - Self-hosted or cloud deployment
  • Weaviate - GraphQL-based vector search
Go to Settings → Vector Stores to configure your provider.
2

Select Embedding Model

Choose the embedding model that will convert your documents into vectors:Embedding modelsLocal Options:
  • Ollama embeddings (nomic-embed-text, mxbai-embed-large)
Cloud Options:
  • OpenAI (text-embedding-3-small, text-embedding-3-large)
  • Cohere (embed-english-v3.0, embed-multilingual-v3.0)
  • Google (text-embedding-004)
Configure in Settings → Embedding Models
3

Configure RAG Settings

Customize your knowledge retrieval settings:RAG settingsKey Parameters:
  • Chunk Size - How to split documents (default: 1000 characters)
  • Chunk Overlap - Overlap between chunks (default: 200 characters)
  • Top K - Number of relevant chunks to retrieve (default: 5)
  • Similarity Threshold - Minimum relevance score (0-1)
Access via Project Settings → RAG Configuration
4

Enable Full-Text Search (Optional)

Add keyword-based search alongside vector search:Full-text search settingsAvailable Options:
  • FlexSearch - Fast, flexible search
  • MiniSearch - Lightweight, full-featured
  • Orama - Typo-tolerant, fast indexing

Adding Knowledge to Your Agent

Via UI

1

Navigate to Knowledge Tab

Go to your project and click the Knowledge tab
2

Upload Content

Supported formats:
  • Documents: PDF, TXT, MD, DOCX, CSV
  • Text: Enter Your Text
GAIA automatically chunks and embeds your content
3

Start Using

Your agent can now reference this knowledge in conversations!

Via API

You can check api reference here Knowledge API Reference
Next Steps: